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Propagation of non-classical light

B y R. Loudon

Department of Physics, University of Essex, Colchester CO4 3SQ, UK

The theoretical descriptions of the main varieties of non-classical light and the prin-
cipal measures of their specifically quantum properties are outlined. The theories of
quantum-optical propagation of the light through slabs of amplifying or attenuating
materials are presented and the main features of the quantum noise effects produced
by transmission are summarized. It is found that, while quantum light may have
lower noise than classical coherent light, transmission through the slab generally
increases the noise. Thus initial enthusiasm for the practical low-noise advantages of
non-classical light has been tempered by the realization that most kinds of optical
propagation or processing enhance the noise to near-classical levels.

1. Introduction

Formulations of the theoretical foundations of quantum optics have mainly assumed a
radiation field in free space excited by, or interacting with, isolated atoms or optical
components whose material properties are not important for the observed effects.
Such theoretical models are in close correspondence with some of the key experi-
ments on the generation and properties of non-classical light; for example, cascade
emission of photon pairs (Clauser 1974), resonance fluorescence by laser excitation of
an atomic beam (Kimble et al. 1978), the generation of squeezed light in an atomic
vapour (Slusher et al. 1985), single-photon interference (Grangier et al. 1986) and
two-photon interference (Hong et al. 1987). Nevertheless, there are other quantum-
optical effects that involve the propagation of non-classical light beams on to the
surfaces, or through the bulk, of dielectric media or the interactions of light with
atoms embedded in, or adjacent to, materials whose optical properties are important
for the outcomes of appropriate experiments. Such processes include spontaneous
emission by atoms close to or inside media, the propagation of non-classical light
through absorbing or amplifying media, and the radiation pressure exerted on media
by incident beams of non-classical light.

A recent focus of interest in quantum optics theory has been the development of
quantization schemes for optical systems that include regions of dielectric material.
Such systems are employed in some of the proposed applications that could take
advantage of the reduced noise available in non-classical light. Ideally, one needs a
quantum-mechanical formalism for the propagation of electromagnetic fields in three
dimensions in environments that include optical components of finite extent made
from lossy or amplifying media. Theories of such generality are currently emergent
for some simple environments. However, the present paper is restricted to problems of
propagation in which a single dimension is selected by a plane parallel light beam in
normal incidence from free space on the surfaces of material components. Intrinsically
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2314 R. Loudon

three-dimensional phenomena, such as transverse effects or spontaneous emission,
are thus excluded from consideration. The main varieties of non-classical light and
the main indicators of its quantum properties are summarized in §2. The effects of
propagation on the non-classical properties are discussed in §3.

2. Photon states

(a ) Photon number states
Practical photon number states have the form of a wavepacket, whose amplitude

spectrum is represented by a function α(ω) determined by the nature of the light
source and any subsequent filtering. The theory is conveniently illustrated by a Gaus-
sian spectrum, with

α(ω) =
(
L2

2πc2

)1/4

exp
{

i(ω − ωc)t0 − L2(ω − ωc)2

4c2

}
, (2.1)

where ωc is the carrier frequency, L is the pulse length and c/L is the root-mean-
square spread of the intensity spectrum; t0 is a reference time at which the peak of
the wavepacket passes the coordinate origin.

The creation operator for the corresponding photon-number states is (Collett 1984,
unpublished; Blow et al. 1990)

Â†(α) =
∫

dω α(ω)â†(ω), (2.2)

where â†(ω) is the usual continuous-mode creation operator with commutator

[â(ω), â†(ω′)] = δ(ω − ω′). (2.3)

The n-photon state is

|n(α)〉 =
1√
n!

[Â†(α)]n|0〉, (2.4)

where |0〉 is the universal vacuum state. The number states are normalized for
wavepacket spectra that satisfy ∫

dω |α(ω)|2 = 1. (2.5)

It is often useful to work in the time domain and, although the frequency is strictly
a positive quantity, it is permissible to define Fourier transformed operators

â(t) = (2π)−1/2
∫

dω â(ω) exp(−iωt), (2.6)

whose application is restricted to states with narrow bandwidths, that is, c/L� ωc
for the spectrum α(ω) in (2.1). The transform of this spectrum is the wavepacket
amplitude

α̃(t) =
(

2c2

πL2

)1/4

exp
{
−iωct− c2(t− t0)2

L2

}
, (2.7)

and (2.2)–(2.5) can all be written in equivalent time-domain forms. Free-space prop-
agation of the wavepacket along the x-axis is simply inserted by the replacement
t→ t− (x/c).
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Propagation of non-classical light 2315

The optical flux in units of photons per unit time is represented by the operator

f̂(t) = â†(t)â(t), (2.8)

whose mean value for the number state (2.4) is

f(t) = 〈f̂(t)〉 = n|α̃(t)|2. (2.9)

The total number of photons in the system is represented by the dimensionless oper-
ator

N̂ =
∫

dt f̂(t) =
∫

dt â†(t)â(t) =
∫

dω â†(ω)â(ω), (2.10)

with the eigenvalue property

N̂ |n(α)〉 = n|n(α)〉. (2.11)

A stationary light beam has a mean flux f(t) that is independent of the time. The
photon number state cannot be stationary as this would imply functions α(ω) or
α(t) that could not be normalized in accordance with (2.5).

The degree of second-order coherence is defined as

g(2)(t, τ) =
〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉
〈â†(t)â(t)〉〈â†(t+ τ)â(t+ τ)〉 (2.12)

and its value for the number state (2.4) is

g(2)(t, τ) = 1− 1/n, (2.13)

which is identical to the standard result for the single-mode number state and is
independent of t and τ , despite the time dependence of the wavepacket amplitude
(2.7). Classical light beams have degrees of second-order coherence that satisfy

g(2)(t, 0) > 1, (2.14)

and the photon number state clearly violates this inequality. The violation of (2.14)
represents a form of the so-called photon antibunching.

(b ) Coherent states
The coherent states are defined in terms of the operator (2.2) as

|{α}〉 = exp{Â†(α)− Â(α)}|0〉. (2.15)

The coherent states are automatically normalized for any spectrum α(ω), and the
normalization condition (2.5) no longer applies. They have the eigenvalue properties

â(ω)|{α}〉 = α(ω)|{α}〉 and â(t)|{α}〉 = α(t)|{α}〉. (2.16)

The mean photon flux and number are

f(t) = |α̃(t)|2 and N =
∫

dt |α̃(t)|2, (2.17)

where the wavepacket amplitude may, for example, have a Gaussian form similar to
(2.7). Another simple example is the ‘single-mode’ coherent state represented by

α̃(t) =
√
F exp(−iωct+ iϑ) and α(ω) =

√
2πF exp(iϑ)δ(ω − ωc), (2.18)
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2316 R. Loudon

where ϑ is the phase and F is the time-independent mean flux. This represents a
stationary light beam with an infinite mean photon number but, in contrast to the
photon number state, no violation of normalizability occurs in this case.

The coherent states are linear superpositions of photon-number states, obtained
by expansion of the exponent in (2.15). The superposition removes any non-classical
features from the coherent states, whose degree of second-order coherence has the
usual value of unity.

(c ) Photon pair states
Consider now two independent sets of continuous field modes. Various continua

are of practical interest, but we take the example of light beams propagating along
the same x-axis but with orthogonal polarizations, denoted ‖ and ⊥. The creation
operator for a pair state in which photons with correlated frequencies are excited,
one of each polarization, is

P̂ †(β‖,⊥) =
∫

dω
∫

dω′ β‖,⊥(ω, ω′)â†‖(ω)â†⊥(ω′), (2.19)

and the photon pair state is defined by

|1(β‖,⊥)〉 = P̂ †(β‖,⊥)|0〉. (2.20)

The joint two-photon wavepacket amplitude β‖,⊥(ω, ω′) has the normalization∫
dω
∫

dω′ |β‖,⊥(ω, ω′)|2 = 1. (2.21)

The expressions (2.19) and (2.21) have the same forms in the time domain, with ω
merely replaced by t. The pair state has the eigenvalue properties

N̂‖|1(β‖,⊥)〉 = N̂⊥|1(β‖,⊥)〉 = |1(β‖,⊥)〉. (2.22)

The mean photon fluxes for the two polarizations are

f‖(t) =
∫

dt′ |β‖,⊥(t, t′)|2 and f⊥(t) =
∫

dt′ |β‖,⊥(t′, t)|2. (2.23)

No stationary pair state is possible, as the corresponding wavepacket amplitude
would not be normalizable.

The photon pair state has several non-classical features. Thus the degrees of
second-order coherence defined as in (2.12) vanish when all the operators refer to a
single polarization

g
(2)
‖,‖(t, τ) = g

(2)
⊥,⊥(t, τ) = 0, (2.24)

in agreement with (2.13) as the photon number equals unity for each polarization.
However, the cross-polarization degree of second-order coherence does not vanish,

g
(2)
‖,⊥(t, τ) =

|β‖,⊥(t, t+ τ)|2
f‖(t)f⊥(t+ τ)

, (2.25)

in accordance with the presence of one photon of each polarization. The vanishing
of (2.24) but not of (2.25) violates the inequality

[g(2)
‖,⊥(t, τ)]2 6 g(2)

‖,‖(t, 0)g(2)
⊥,⊥(t, 0) (2.26)

that must be satisfied by the degrees of second-order coherence for intensity mea-
surements on classical light beams.
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(d ) Two-photon coherent states
The two-photon coherent states are defined in terms of the pair operator (2.19) as

|{{β‖,⊥}}〉 = exp{P̂ (β‖,⊥)− P̂ †(β‖,⊥)}|0〉, (2.27)

analogous to the single-photon coherent states (2.15) but with a conventional change
in the sign of the exponent. The states are automatically normalized and there is no
need for β‖,⊥(ω, ω′) to satisfy (2.21). It is possible to define a stationary light beam,
such as that generated by parametric down conversion with a ‘single-mode’ pump of
frequency ωp, where

β‖,⊥(ω, ω′) = β(ω)δ(ω + ω′ − ωp), 0 6 ω, ω′ 6 ωp (2.28)

and
β‖,⊥(t, t′) = (2π)−1/2β̃(t− t′) exp(−iωpt

′). (2.29)
The mean fluxes in the two beams are (Blow et al. 1990)

f‖(t) = f⊥(t) = (2π)−1
∫ ωp

0
dω sinh2 |β(ω)|. (2.30)

The non-classical properties of the single pair state are lost to some extent by
the formation of the superposition of multiple pair states given by (2.27). Thus the
degrees of second-order coherence for the individual polarizations have the forms

g
(2)
‖,‖(τ) = g

(2)
⊥,⊥(τ) = 1 +

∣∣∣∣∫ dω exp(−iωτ) sinh2 |β(ω)|
∣∣∣∣2[∫

dω sinh2 |β(ω)|
]2 (2.31)

characteristic of chaotic light (Barnett & Knight 1985). However, the cross-
polarization degree of second-order coherence

g
(2)
‖,⊥(τ) = 1 +

∣∣∣∣∫ dω exp[−iωτ − i arg β(ω)] sinh |β(ω)| cosh |β(ω)|
∣∣∣∣2[∫

dω sinh2 |β(ω)|
]2 , (2.32)

continues to violate the classical inequality (2.26) as cosh |β(ω)| is larger than
sinh |β(ω)|.

(e ) Squeezed states
The operation on the right of (2.27) generates squeezed vacuum states, denoted

|{{β}}〉, when the two operators in the pair creation integrand of (2.19) refer to a sin-
gle set of continuous modes. The substitution (2.28) continues to define a stationary
light beam, such as that produced by degenerate parametric down conversion, and
this special case is assumed here. Some of the properties of the squeezed states are
obtained by simple removal of the polarization subscripts from results given in §2 d,
as in the expression (2.30) for the flux in the single light beam. However, the expres-
sion (2.31) for the intrabeam degree of second-order coherence is no longer correct,
and of course the interbeam result (2.32) becomes meaningless. The second-order
coherence of squeezed light is not needed for our subsequent calculations.
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The expectation values of products of pairs of field operators are particularly
important for applications of squeezed light, and they are

〈â†(ω)â(ω′)〉 = sinh2 |β(ω)|δ(ω − ω′) (2.33)

and

〈â†(ω)â†(ω′)〉 = 1
2 exp[−i arg β(ω)] sinh[2|β(ω)|]δ(ω + ω′ − ωp). (2.34)

A homodyne measurement of the electric field of the light is represented by the
operator

ÊLO =
exp(iφLO)√

2πT0

∫
dω
{
â†(ω)

exp[i(ω − ωLO)T0]− 1
ω − ωLO

+ H.c.
}
, (2.35)

where ωLO is the local oscillator frequency, φLO is its phase and T0 is the duration
of the measurement. The normalization of the homodyne field operator is such that
its variance equals unity for the vacuum state or for coherent light, and another
condition satisfied by classical light is the inequality

〈(∆E[φLO])2〉 > 1. (2.36)

With a local oscillator frequency equal to the central frequency 1
2ωp of the squeezing

and an integration time T0 sufficiently long that β(ω) varies little over the frequency
range 1/T0, the variance of the homodyne field for the squeezed vacuum state is
given approximately by

〈(∆E[φLO])2〉 = exp[2|β(ωLO)|] sin2[φLO − 1
2 arg β(ωLO)]

+ exp[−2|β(ωLO)|] cos2[φLO − 1
2 arg β(ωLO)]. (2.37)

This reduces to the vacuum value for β(ωLO) = 0 but it takes non-classical values
smaller than unity for |β(ωLO)| > 0 and for appropriate values of the local oscillator
phase. The amount of squeezing is conveniently characterized by the reduction of the
variance below unity.

3. Propagation through a material slab

Non-classical light that violates the inequalities (2.14) or (2.36) corresponds to fluc-
tuation spectra or noise with values smaller than those of classical light beams, and
various applications could, in principle, take advantage of the non-classical proper-
ties. We derive the extents to which the reduced noise survives transmission through
a slab of amplifying or attenuating material.

(a ) Field quantization
We treat the propagation of non-classical light through a dielectric slab defined

by the dielectric function

ε(x, ω) =

{
1, for |x| > l,

ε(ω), for |x| < l.
(3.1)

The material dielectric function ε(ω) is related to the complex refractive index n(ω)
by

ε(ω) = [n(ω)]2, where n(ω) = η(ω) + iκ(ω). (3.2)
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Figure 1. Transmission gain GT (ω) of a dielectric slab of thickness 2l for a frequency ω = 10c/l
as a function of the refractive index η(ω) for the values of extinction coefficient κ(ω) shown.

The reflection and transmission coefficients of the slab are

R(ω) = −n(ω)2 − 1
D(ω)

exp
(
−2iωl

c

){
1− exp

(
4iωn(ω)l

c

)}
(3.3)

and

T (ω) =
4n(ω)
D(ω)

exp
(

2iω(n(ω)− 1)l
c

)
, (3.4)

where
D(ω) = (n(ω) + 1)2 − (n(ω)− 1)2 exp(4iωn(ω)l/c). (3.5)

The extinction coefficient κ(ω) is positive for most frequencies ω, but it may be
negative over limited ranges of frequency; the material attenuates or amplifies light
of these respective frequencies. For the latter frequencies, reflection or transmission
at the slab may produce amplification of an incident light beam with intensity gain
coefficients defined by

GR(ω) = |R(ω)|2 and GT (ω) = |T (ω)|2. (3.6)

For convenience, we use the term ‘gain’ even for positive κ(ω), where the light suffers
a loss. These gains have the properties

GR(ω) +GT (ω)


> 1, for κ(ω) < 0 (gain),
= 1, for κ(ω) = 0,
< 1, for κ(ω) > 0 (loss),

(3.7)

where frequencies that satisfy the first and third conditions are termed ‘amplified’ and
‘attenuated’ frequencies, respectively. Figure 1 shows the form of the transmission
gain as a function of the refractive index η(ω) for a fixed frequency and three values of
κ(ω). The gain for κ(ω) = −0.02 shows a strong resonance at η(ω) = 0.16 associated
with a pole at a nearby frequency where the amplifying slab has a lasing threshold.
The theory presented here is valid for material parameters such that the conditions
for laser oscillation are not satisfied for any frequency.

The notation for the destruction operators used in the electromagnetic field quanti-
zation for propagation parallel to the x-axis is shown in figure 2, where the subscripts
on the operators indicate directions of propagation, not the two sides of the slab.
The operators âR(ω), b̂L(ω) and âL(ω), b̂R(ω) represent the pairs of input and output
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2320 R. Loudon

Figure 2. Spatial configuration of the dielectric slab with the notation for field quantization.

fields, respectively, and the states of the two input fields are denoted |R〉 and |L〉. The
operators F̂R(x, ω) and F̂L(x, ω) represent the rightwards and leftwards propagating
noise fields in the interior of the slab, and the state of the noise field is denoted by
|F 〉, although this strictly has the nature of a statistical mixture; the noise state can
be described by an effective temperature, which takes negative values for amplified
frequencies and positive values for attenuated frequencies. The relations between the
output fields and the input and noise fields are

âL(ω) = R(ω)âR(ω) + T (ω)b̂L(ω) + F̂L(ω) (3.8)

and

b̂R(ω) = T (ω)âR(ω) +R(ω)b̂L(ω) + F̂R(ω). (3.9)

The coefficients of the first two terms on the right are consistent with the definitions
of the intensity gains in (3.6). The final terms are noise operators (Matloob et al.
1995, 1997), proportional to

√|κ(ω)|, associated with the gain or loss in the slab,
whose commutators,

[F̂L(ω), F̂L†(ω′)] = [F̂R(ω), F̂R†(ω′)] = (1− |R(ω)|2 − |T (ω)|2)δ(ω − ω′) (3.10)

and

[F̂L(ω), F̂R†(ω′)] = −(R(ω)T ∗(ω) + T (ω)R∗(ω))δ(ω − ω′), (3.11)

ensure that both the incoming and outgoing field operators, related by (3.8) and (3.9),
have boson commutators similar to (2.3). The noise operators F̂L(ω) and F̂R(ω) have
the characters of destruction operators for attenuated frequencies but they take the
natures of creation operators for amplified frequencies. The relations (3.8)–(3.11)
apply generally to any amplifying or attenuating beam splitter and they ensure that
the system adds the requisite amounts of noise to the output signals (Matloob et al.
1997; Barnett et al. 1998).

We consider the output on the right of the slab for conditions in which |L〉 is
the vacuum state |0〉L. The mean photon-number flux is then determined by the
expectation value

〈b̂R†(ω)b̂R(ω′)〉 = GT (ω)〈âR†(ω)âR(ω′)〉+ 〈F̂R†(ω)F̂R(ω′)〉. (3.12)

The added noise, given by the second term on the right, has the value

〈F̂R†(ω)F̂R(ω′)〉 =

[
N(ω, |T |) + 1
−N(ω, T )

]
{GR(ω) +GT (ω)− 1}δ(ω − ω′), (3.13)
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where

N(ω, T ) =
1

exp(~ω/kBT )− 1
. (3.14)

The noise takes its minimum value when the slab effective temperature |T | for ampli-
fied frequencies, or temperature T for attenuated frequencies, is zero and this is
assumed to be the case in the subsequent calculations. The corresponding noise state
is denoted |0〉F , and it corresponds to perfect inversion for amplified frequencies and
to the zero-temperature ground state for attenuated frequencies. A noise contribu-
tion then remains for amplified frequencies but the noise vanishes for attenuated
frequencies. Note that, in accordance with the first line of (3.7), the noise output
persists even for GT (ω) < 1 provided that GR(ω) +GT (ω) > 1.

(b ) Pulse transmission
The quantized field theory can be used to study the propagation of non-classical

light through the slab. Consider an input where the state |R〉 is a photon number
state (2.4) with the Gaussian form of wavepacket from (2.1) or (2.7). The various
measurements that can be made on the right of the slab correspond to expectation
values of appropriate functions of the operators b̂R(t) and b̂R†(t). Some of the results
are the same as in the classical theory of pulse propagation, while others show the
specific quantum-mechanical properties of the input number state.

The mean output flux, with the flux operator defined as in (2.8), is

f(t) = R〈n(α)|L〈0|F 〈0|b̂R†(t)b̂R(t)|0〉F |0〉L|n(α)〉R. (3.15)

The flux operator, obtained by Fourier transformation of (3.12), contains contri-
butions from the transmitted pulse and, for amplified frequencies, from the noise
spectrum (3.13). The calculation is straightforward (Artoni & Loudon 1997, 1998)
and the contributions of the transmitted pulse are shown in figure 3. The input pulse
is assumed to be much longer than the slab thickness, L� 2l, when the transmission
gain has negligible variation over the main frequencies that make up the pulse. The
pulse then retains a single component with Gaussian shape on transmission through
the slab. Dispersion is neglected and the refractive index, denoted ηc, is that at the
carrier frequency ωc. Figure 3a shows the shift ∆x in the position of the peak of the
pulse relative to its position at the same instant of time in the absence of the slab,
while figure 3b shows the ratio of the mean-square length L2

T of the transmitted pulse
to that of the input pulse. The shift in peak position has a component 2l(1 − ηc)
from the change in optical path associated with the refractive index of the slab and
an oscillatory part caused by the interference of multiply reflected contributions to
the output pulse. These produce an additional delay in peak position and a length-
ening of the pulse when 4ωcηcl/c is an even integer multiple of π and the reflected
contributions have the same phase as the unreflected output pulse. When 4ωcηcl/c
is an odd integer multiple of π, the successive reflections give rise to contributions of
alternating phase, and the corresponding reduction in the strength of the rear of the
pulse produces a positive contribution to the peak position and a reduction in the
length of the transmitted pulse. Similar effects contribute to the apparent superlu-
minal transmission of pulses through more complicated dielectric systems (Japha &
Kurizki 1996). The effects of the multiple reflections are reduced by attenuation and
increased by amplification. Of course, as the slab approaches a lasing threshold at
frequency ωc, the output tends to a continuous wave, the limit of a pulse of infinite
delay and length. Essentially the same distortions as described here occur for an
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Figure 3. Properties of a Gaussian pulse of input length L = 40l and carrier frequency ωc = 10c/l
after transmission through a dielectric slab of thickness 2l as functions of the refractive index
ηc for the extinction coefficients κc shown against the curves (a) shift in peak position and
(b) mean-square length.

incident coherent pulse described by (2.15) and more generally in the transmission
of pulses described by classical theories.

(c ) Antibunching
In contrast to the essentially classical modifications of the pulse shape, the degree

of second-order coherence, given by (2.13) for the input number state, shows specific
non-classical features. The degree of second-order coherence of the transmitted beam
is obtained from (2.12) with use of the output operator from (3.9) and the noise
expectation value from (3.13). The result for zero time delay τ is

g
(2)
out(t, 0) =

〈b̂R†(t)b̂R†(t)b̂R(t)b̂R(t)〉
〈b̂R†(t)b̂R(t)〉2 = 2− n(n+ 1)|J1(t)|4

[n|J1(t)|2 + J2]2
. (3.16)

Here the contribution of the transmitted pulse is described by the integral

J1(t) = (2π)−1/2
∫

dω T (ω)α(ω) exp(−iωt) ≈ T (ωc)α̃(t), (3.17)

and that of the noise by

J2 = (2π)−1
∫

dω θ[−κ(ω)]{GR(ω) +GT (ω)− 1}, (3.18)

where the unit step function ensures that only amplified frequencies contribute to the
noise integral. Transmission through the slab causes no change when only attenuated
frequencies are detected (J2 = 0), so that

g
(2)
out(t, 0) = g

(2)
in (t, 0) = 1− 1/n, (3.19)

and the degree of second-order coherence continues to violate the classical inequality
(2.14).

However, the noise contribution does not vanish for amplified frequencies, defined
by the first condition in (3.7), and the chaotic value of 2 occurs when the noise
dominates the pulse contribution. The latter takes its maximum value for frequencies
within a separation c/L from ωc and times when the peak of the pulse lies within a
distance L of the observation point, so that the effects of the noise can be minimized
by appropriate filtering of the detected signal. A rough idea of the maximum gain for
which the inequality (2.14) is violated can be obtained from the expression in (3.16)
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by assuming constant gains GR and GT across a bandwidth ∆ω in the integrals
(3.17) and (3.18), with the result

nGT (2GR +GT − 2) + (GR +GT − 1)2 < 0. (3.20)

In the most favourable case of zero reflection gain, GR = 0, the solution is

1 6 GT < 1 +
(

n

n+ 1

)1/2

, (3.21)

so that only very modest gains of 2 or less are allowed if the non-classical antibunching
feature is to be preserved (Loudon & Shepherd 1984).

(d ) Squeezing
Now suppose that the incident state |R〉 is a squeezed vacuum |{{β}}〉, while |L〉

remains in the vacuum state. A homodyne measurement of the field transmitted
through the slab is represented by the operator (2.35), with the destruction and cre-
ation operators now taken from (3.9) and its Hermitian conjugate. The expectation
values needed to evaluate the variance of the homodyne field are readily calculated
(Artoni & Loudon 1998), and the result can be written as

〈(∆E[φLO])2〉out − 1 = GT (ωLO){〈(∆E[φLO − arg T (ωLO)])2〉in − 1}
+2θ[−κ(ωLO)][GR(ωLO) +GT (ωLO)− 1], (3.22)

where the second term on the right is present only for amplified frequencies. The
first term on the right contains the homodyne variance of the squeezed input state,
given by (2.37), with an additional phase shift from the slab transmission coefficient.
This term is negative for appropriate values of the local oscillator phase. The expres-
sion (3.22) remains negative for these phase angles and for attenuated frequencies,
but the reduction of the homodyne variance of the output field below its coherent
value of unity is decreased, and the amount of squeezing approaches zero for heavy
attenuation.

The squeezing is more seriously affected for amplified frequencies, where the second
term on the right of (3.22) makes a positive contribution that can easily overcome
the negative contribution of the first term. Thus for an extremely squeezed input
state, with zero homodyne variance, the output homodyne variance is

〈(∆E[φLO])2〉 = 2GR(ωLO) +GT (ωLO)− 1 (3.23)

and the squeezing is entirely lost for gains that satisfy

2GR(ωLO) +GT (ωLO) > 2, (3.24)

when the output variance is greater than unity. The maximum allowed gain in the
most favourable case of GR = 0 is again equal to 2. The squeezing is lost for smaller
values of the gains when the amount of input squeezing is less. In contrast, the output
variance obtained from (3.22) for an input coherent or vacuum state is

〈(∆E[φLO])2〉out = 2GR(ωLO) + 2GT (ωLO)− 1. (3.25)

The unit variance characteristic of the vacuum state is recovered for a frequency that
is neither amplified nor attenuated, as in the second condition of (3.7).
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4. Conclusions

The descriptions of some of the main examples of pulsed and stationary states
of non-classical light have been reviewed. A recently developed quantization scheme
for an attenuating or amplifying slab surrounded by empty space has been used
to evaluate the effects of transmission through the slab on measures of the non-
classicality given by the degree of second-order coherence for direct detection and
by the electric-field variance for homodyne detection. Non-classical features tend to
survive transmission through an attenuating slab, although their magnitudes may
be reduced. The effects of transmission through an amplifying slab are more drastic,
and non-classical features are usually lost, even for modest values of the gain. Thus
for the phase-insensitive amplification considered here, both the antibunching and
squeezing effects are lost for intensity gains with maximum values of order 2.

Any advantages in the lower noise inherent in some kinds of non-classical light
are therefore reduced or lost completely after propagation through attenuating or
amplifying materials. For example, any initial squeezing is removed after propagation
through a few kilometres of even the lowest-loss gain-compensated optical fibres,
although the range of reduced-noise signals can be significantly extended by the
use of phase-sensitive amplifiers (Mecozzi & Tombesi 1990). Nevertheless, there is
little advantage in using such light in long-distance optical communications and
useful applications of non-classical light are likely to be restricted to laboratory
experiments. Again, in a quite different example covered elsewhere (Samphire et al.
1995), the radiation pressure fluctuations at a mirror can be reduced by the use
of antibunched light, with possible applications to high-precision interferometry in
gravitational wave detection, but the reductions are made negligibly small by the
interference of the incident light with vacuum fluctuations.
The work was carried out in collaboration with M. Artoni, M. Babiker, S. M. Barnett, K. J. Blow,
M. J. Collett, J. Jeffers, R. Matloob, N. Imoto, S. J. D. Phoenix and T. J. Shepherd. Some of it
was supported by the European Community Human Capital and Mobility Programme through
its network on ‘non-classical light’ with Contract No. CHRX-CT93-0114.
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